Atomic Structure

Rutherford’s atomic model

  1. \to Alpha ray

    • Mechanical wave

    • 2 +ve charge

    • 2 protons + 2 neutrons

    \to Radioactive substance (Radium)

    \to Lead cavity

    \to Gold foil ( Thickness = 0.00004cm)

    \to ZnS Screen ( Alpha particle shines in ZnS screen)

    \to Nucleus ( As a Result)

  2. \textbf{Findings}

    i) Outer hollow part – orbital or shell

    ii) Central dense part – Nucleus

    • 1 Fermi = 10^-15 m

  3. \textbf{Defects}

    i) Does not explain continuous spectrum or H- spectrum

    ii) The moving charge particle electron does not loss the energy (Does not follow law of electro dynamics)


Bohr’s atomic model

  1. \textbf{ Postulates}

    \to Stationary State: Energy neither loss nor gain when electron revolves round the nucleus is called stationary state.

    \to Quantization of angular momentum:

    (Angular Momentum) mvr=\dfrac{nh}{2π }

    n=Principle quantum no. = 1,2,3,4... = K,L,M,N…

    hf=E_2-E_1

    \dfrac{hc}{λ}=E_2-E_1

    \to Formation of spectra: When we give energy externally, it jumps to the upper energy level and when it jumps to lower energy level, it emits energy in the form of spectra.

    E=hf (where h= Plank’s constant and f= frequency)

    Similarly, ∆E=E_2-E_1

  2. \textbf{Hydrogen Spectrum ( Emission spectrum ) }

    n_2 \to n_1 or E_2 \to E_1

    i) Lyman Series:

    • UV rays

    • n_1=1 and n_2=2,3,4….

    ii) Balmer Series:

    • Visible region = observe photochemical Reaction

    = 3500-8000 \dot{A}

    = VIBGYOR

    • n_1=2 and n_2=3,4,5….

    iii) Paschen Series:

    • IR

    • n_1=3 and n_2=4,5,6….

    iv) Brackett Series:

    • IR

    • n_1=4 and n_2=5,6,7….

    v) Pfund Series:

    • IR

    • n_1=5 and n_2=6,7,8….

  3. \textbf{Notes}: (Worth to remember)

    \to Total no of spectral lines = \dfrac{n(n-1)}{2}

    \to No of spectral lines in between two given series =\dfrac{∆n (∆n+1)}{2}

    \dfrac{1}{λ}=R(\dfrac{1}{n_1^2} -\dfrac{1}{n_2^2} ) = Balmer’s Formula

    Where R = Rydberg’s constant

  4. Defects of Bohr’s atomic model:

    i) It does not explain the micro or fine spectrum

    ii) It does not explain the spectrum of multi electron system but only explain the spectrum of mono electron system like HHe^+Li^{++}, etc.

    iii) It does not explain the Zeeman effect (splitting of lines due to magnetic field), Stark effect ( Splitting of lines due to electric field) and Shielding effect.

    iv) It does not explain the duel nature of electron


Quantum Number

  1. The state and nature of electron in orbit.

    Orbit NumberOrbit DesignationPrincipal Quantum Number(n)Max. Number of Electrons in the orbit(2n^2)
    1K12
    2L28
    3M318
    4N432
    5O5-
    6P6-
  2. \textbf{Principal Quantum Number}

    \to Main shell or main orbit or main axis

    \to Represented by n

    n=1, 2, 3, 4…. =K, L, M, N…. \to It determines the size of atom

    \to Total no. of electron in each orbit = 2n^2

    \to Total no. of orbital in each orbit = n^2

    Eg : L = 2s (s) , 2p ( px, py, pz)

    = 2^2

    = 4

    \to Also, radius ∝ n^2

    Energy ∝ 1/n^2

  3. \textbf{Azimuthal quantum number (l)}

    \to Sub shell or subsidiary or auxillary quantum number

    \toRepresented by ‘l’

    l = 0,1,2,3…(n-1) {1 less than principle quantum no.}

    = s,p,d,f…..

    \to Eg: For K shell

    n=1

    l=0 …. (n-1)

    = 0…..(1-1)

    = 0 => s-sub shell

    \toFor M shell

    n=3

    l=0 …. (n-1)

    = 0…..(3-1)

    = 0,1,2

    = s,p,d

    \to Maximum no of electron in each subshell

    = 2(2l+1) or 4l+2

    s= 4l+2=0+2=2=> (Sperical)

    p=4l+2=4+2=6=> (Dumbell)

    d=4l+2=8+2=10=> (Double dumbbell)

    f=4l+2=12+2=14=> ( Complicated )

    \to Azimuthal quantum number determines the shape of orbital.

    \to Orbital angular momentum (mvr)=\dfrac{h}{2π} \sqrt{l(l+1)}

  4. \textbf{Magnetic quantum number (m)}

    \to Degenerated orbitals of each subshell.

    \to Orientation of orbitals in Zeeman effect

    \to Splitting of orbitals

    \to Represented by ‘m’

    \to Calculated by m= 2l+1

    \to M ranges from –l to +l including zero

    i.e. m = -l, 0, +l

    \to Eg: For d sub shell:

    l=2

    no of orbitals of d-sub shell (m) = 2l+1 = 2\times 2+1= 5

    :. m = -l ,0,+l

    = -2,-1,0,1,2

  5. \textbf{Spin quantum number (s)}

    \to The state and nature of electron in orbital

    \to Represented by ‘s’

    \toSpin angular momentum (mvr)=\dfrac{h}{2π} \sqrt{(s(s+1))}

    \to Values are +\dfrac{1}{2} and -\dfrac{1}{2}


Remember

  1. \to No two electrons in an atom can have the same set of all quantum no.

    \to Eg: Li=3=1s^2,2s^1=> Presence of Pauli’s exclusion principle

    Li=3=1s^3 => Absence of Pauli’s Exclusion principle (Mistake)

  2. \textbf{Aufbau rule} or Simon’s (n+l) rule:

    \to an electron occupies orbitals in order from lowest energy to highest.

    \to n+l rule

    \to 1s<2s<2p<3s<3p<4s<3d<…

    NOTE:

    a) 4s<3d

    because for 4s=4+0=4

    For 3d=3+2=5

    :. 4s(4) < 3d(5)

    b) 4p <5s

    Because 4p = 4+1 =5

    5s =5+0 =5

    In this case electron must be filled in subshell with less principle quantum number.

    s<p<d<f

  3. \textbf{Hund’s Rule of maximum multiplicity}

    \to Electrons are filled in degenerated orbitals of each subshell at 1st single and then paired from lower energy level to higher energy level.

    \to Half filled and full filled orbitals are more stable

    Eg : p^2<p^3>p^4 why? => (Half filled) Trigonal Planar

  4. \textbf{Note}

    \to The compound of Zinc is always white because zinc has no unpaired electrons.

    \to Cu^+ is more stable than Cu^{++} in solid state.

    \to Cu^{++} is more stable than Cu^{+} in solution state.

    \to Fe^{+++} is more stable than Fe^{++} in both solid and liquid state

Atomic Structure

Reactions

Post a Comment

0 Comments