GAS LAWS

  1. \toThe volume of a given mass of a gas is inversely proportional to its pressure\\at constant temperature, i.e 𝑽∝\frac{𝟏}{P} (if mass of gas and temperature of gasare constant)\\or, PV = constant Thus, P_1 V_1 = P_2 V_2 \\\to Real gas obeys Boyle’s law at low pressure and high temperature.\\\to Boyle’s law is represented graphically as follows:\\

  2. \textbf{Charle’s Law:}\\\toThe volume of given mass of a gas at constant pressure increases or\\decreases by a constant fraction 𝛼(= \frac{1}{273} ) of its volume at 0^oC for rise or\\fall of temperature by 1^oC.\\i.e 𝑽 = π‘½_𝟎 [𝟏 + πœΆπ’•]. This law is also known as Charle’s volume law. \toThe volume of given mass of a gas at constant pressure is directly proportional to its absolute temperature i.e 𝑽∝𝑻 or, V/T = constant Thus, π‘½_𝟏 = π‘½_𝟐 \to Charle’s law is represented graphically as follows:

  3. \textbf{Dalton’s law of partial pressure:}\\\toThe pressure exerted by a mixture of non-reacting gases at constant temperature\\is equal to sum of partial pressure of each components in the mixture.\\P=P_1 + P_2 + P_3 +..... \toPartial pressure = mole fraction x total pressure\\

  4. \textbf{Gay-Lussac’s law:}\\\toThe volume of given mass of a gas at constant volume increases or decreases\\by a constant fraction𝛼(= \frac{1}{273} ) of its pressure at 0^oC for rise or\\fall of temperature by 1^oC. i.e 𝑷 = π‘·_𝟎 [𝟏 + πœΆπ’•]. This law is also known as Charle’s pressure law.\\But, in Gay-Lussac’s law flexible container is used whereas in Charle’s law rigid container is used.\\\toThe pressure of given mass of a gas at constant volume is directly proportional to its\\absolute temperature i.e 𝑷 ∝ 𝑻 or, P/T = constant\\Thus, \frac{𝑷_𝟏}{𝑻_𝟏} = \frac{𝑷_𝟐}{𝑻_𝟐} \\


Combined Gas Equation:
Here, \to \frac{𝑷𝑽}{𝑻}= 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕 \to \frac{𝑷_πŸπ‘½_𝟏}{𝑻_𝟏}=\frac{𝑷_πŸπ‘½_𝟐}{𝑻_𝟐}

Ideal Gas Equation

  1. Here,\\\to For n moles of gas, PV = nRT\\(R = 8.314 Jmol^{-1} K^{-1} is universal gas constant and is same for all gases)\\PV = nRT\\=> 𝑷𝑽 = π’Ž 𝑹𝑻 𝑴\\=> 𝑷𝑽 = π’Ž(\frac{𝑹}{𝑴})𝑻\\=> 𝑷𝑽 = π’Žπ’“π‘» (m is mass of gas, M is molecular mass, r = R/M is specific gas constant or\\gas constant per unit mass.)\\=>𝑷=𝝆𝒓𝑻 ( 𝜌 =\frac{m}{v} is density of gas)\\Also,\\PV = nRT\\=> 𝑷𝑽 = \frac{𝑡}{𝑡_a}𝑹𝑻 (N = number of molecules, N_a = avogadro’s number)\\=> 𝑷𝑽 = π‘΅π’Œπ‘» (K = R/N_a = 1.3806 x 10-23 J/K is Boltzmann’s constant)


Degree of freedom

Total number of independent quantities (or coordinates)\\required to define the state of a system is degree of freedom (f).\\It can also be defined as total number of independent ways in which gas molecule can have energy.\\f = 3N-R (N= no of atoms, R= no of restrictions or number of independent relation among the atom)\\\underline{{For} {Monoatomic}}: N=1, R=0\\f= 3 i.e. only translation motion.\\\underline{{For} {Diatomic}}: N=2, R=1\\f= 5 i.e. translation and rotational motion\\\underline{{For} {Triatomic}}: Linear (Eg: CO_2): N=3, R=2, f= 7\\Non Linear (Eg: H_2O): N=3, R=3, f= 6

Average Kinetic Energy

  1. \to \underline{{For} {Monoatomic}{Gases}}:(f=3)\\Average KE per mole = \frac{𝑓}{2}𝑓 𝑅𝑇 = \frac{3}{2} π‘…𝑇\\Average KE per molecule = \frac{𝑓}{2}𝐾𝑇 = \frac{3}{2} πΎπ‘‡\\\to \underline{{For} {Diatomic} {Gases}}: (f=5) :\\Average KE per mole = \frac{𝑓}{2}𝑅𝑇 = \frac{5}{2}𝑅𝑇\\Average KE per molecule =\frac{𝑓}{2}𝐾𝑇 = \frac{5}{2}𝐾𝑇\\

    \to \underline{{For} {Triatomic} {Gases}}: \\